Плазморез: устройство, принцип работы принцип работы, инструкция по использованию, видео и фото

Плазморез: нюансы выбора + 5 лучших моделей

Плазморез не часто требуется в хозяйстве, однако людям, которые постоянно работают с металлом, он бывает необходим. Это аппарат позволяет гораздо быстрее и проще выполнять резку металла, чем с использованием болгарки. Поэтому в данной статье я хочу поделиться с вами некоторыми нюансами, которые необходимо знать при выборе аппарата для плазменной резки.

Аппарат позволяет быстро и без особых усилий разрезать металлические заготовки большой толщины

Что представляет собой аппарат

Устройство аппарата

Плазморез достаточно сложный аппарат, состоящий из нескольких основных узлов:

Этот элемент представляет собой плазменный резак, по сути, основной элемент аппарата, который образует плазму. Плазмотрон соединяется с другими элементами аппарата при помощи кабеля и шланга, по которому подается воздух и электрический ток.

Надо сказать, что резаки бывают двух типов:

  • Прямого действия. Дуговой разряд появляется между металлической заготовкой и резаком. Именно такие плазмотроны применяются для работы с металлом;

Схема устройства плазмотрона прямого действия

  • Косвенного. Дуговой разряд возникает внутри самого плазмотрона. Это позволяет использовать аппарат для резки неметаллических материалов.
    Плазмотрон содержит два основных элемента:
  • Сопло. Эта деталь формирует плазменную струю. От ее диаметра и длины зависит скорость резки металла, размер реза и интенсивность охлаждения.
    Как правило, диаметр сопла не превышает 3 миллиметров, а длина составляет 9-12 миллиметров. Чем больше длина, тем качественнее рез, но меньше долговечность самого сопла. Поэтому оптимальный вариант, когда длина сопла в полтора раза больше его ширины;

Схема устройства сопла и электрода

  • Электрод. Металлический стержень, как правило, выполненный из гафния. Электрод обеспечивает возбуждение электрической дуги для воздушноплазменной резки.

Источник питания

Задача источника питания заключается в подаче тока на плазмотрон. Источники питания бывают двух типов:

  • Трансформатор. Увесистые и потребляют много энергии, но зато они менее чувствительные к перепадам температуры. Кроме того, толщина заготовки, которую способен перерезать аппарат, может достигать 40-50 мм;
  • Инверторы. Более легкие, компактные и экономные в плане потребления энергии. Кроме того, инверторы обеспечивают более стабильную дугу.
    К минусам относится то, что их можно использовать для разрезки листов толщиной не более 30 миллиметров.

Компрессор обеспечивает устройство сжатым воздухом с постоянным давлением

Компрессор

Для работы плазмореза необходим газ, которые обеспечивает образование плазмы и отвечает за охлаждение плазмотрона. Поэтому для подачи газа на сопло используется компрессор.

В аппаратах с силой тока не превышающей 200 А, в качестве газа используется воздух. Такой аппарат может разрезать заготовки толщиной до 50 миллиметров.

Промышленный станок с работает другими газами, такими как аргон, гелий, азот, водород и т.д.

Кабель-шланговый пакет связывает отдельные узлы в единый аппарата

Кабель-шланговый пакет

Как я уже говорил выше, данный элемент объединяет отдельные узлы аппарата в плазморез, т.е. по шлангу подается газ на сопло, а кабель обеспечивает подачу тока на электрод.

Принцип действия

Что такое плазма

С устройствами аппарата мы разобрались, теперь давайте рассмотрим, как работает аппарат плазменной резки, и что вообще означает слово «плазма». Итак, плазма — это разогретый до высокой температуры воздух или другой газ, находящийся в ионизированном состоянии. Температура нагрева может достигать 30000 градусов.

На схеме показан принцип плазменной резки

Принцип работы устройства следующий:

  1. При нажатии кнопки розжига, на электрод подаются токи высокой частоты;
  2. Между соплом и электродом образуется дежурная дуга, температура которой достигает 8000 градусов;
  3. Затем происходит подача сжатого воздуха на сопло;
  4. Воздух прорывается через дугу, в результате чего нагревается и увеличивается в объеме в сто раз. При этом происходит его ионизация, и воздух приобретает токопроводящие свойства;
  5. При соприкосновении плазмы с заготовкой образуется режущая дуга, при этом дежурная дуга гаснет. В результате металл с легкостью разрезается, причем воздух выдувает его с линии реза.

Аппарат для плазменной резки можно сделать своими руками . Для этого обычно используют инвертор сварочного аппарата , однако можно выполнит устройство и «с нуля», воспользовавшись схемами, имеющимися в интернете.

Самодельный плазморез обойдется вам в несколько раз дешевле фирменного

Нюансы выбора

Выбирая плазморез, необходимо уделить внимание следующим моментам:

  • Универсальность. Существуют аппараты, которые можно использовать не только для резки металла, но и для сварки штучным электродом, а также для аргонодуговой сварки.
    Правда, следует помнить, что универсальность обычно плохо сказывается на качестве выполняемых операций и производительности. Как правило, универсальный плазморез не может резать заготовки толщиной более 11 мм;
  • Сила тока. Чем выше сила тока, тем сильней нагревается дуга, соответственно, быстрее выполняется плазморезка, а также увеличивается максимальная толщина детали, которую может перерезать данным способом.
    Поэтому предварительно нужно определиться для каких целей вам нужен плазморез, т.е. с какими деталями вам придется работать. Если вы будете резать сталь толщиной до 20 мм, достаточно будет аппарата с силой тока 20 А.
    Если толщина металла будет больше, соответственно, понадобится более мощный плазморез – с силой тока 40-60 А. У промышленных аппаратов сила тока может достигать 200 А и больше;
  • Тип электросети. Бытовые аппараты плазменной резки могут работать от сети 220 В, но их сила тока, как правило, не превышает 40 А. Промышленные аппараты работают от сети 380 В;
  • Продолжительность включения. Каждый плазморез имеет такую характеристику как ПВ, которая исчисляется в процентах. Этот показатель указывает время, которое аппарат может работать.
    Основу составляет рабочий цикл в 10 минут. Если ПВ, к примеру, 70%, значит плазморез может 7 минут работать, после чего 3 минуты должен остывать. Если показатель равен 40%, значит аппарат может работать не более 4 минут, после чего 6 минут должен остывать.
    Существуют аппараты с ПВ 100%, которые можно использовать беспрерывно. У них обычно реализовано водяное охлаждение;
  • Компрессор. Плазморез может иметь встроенный или отдельный подключаемый компрессор. Для бытовых целей удобней аппараты со встроенным компрессором, но они маломощные.
    Если плазморез нужен для профессиональной работы, необходим отдельный компрессор. Главное требование к компрессору — обеспечение плазмотрона постоянным давлением воздуха, т.е. без пульсаций, причем воздух должен быть обязательно сухим. Кроме того, давление воздуха, создаваемое компрессором, обязательно должно соответствовать требованиям аппарата;
  • Удобство. Плазморез должен иметь достаточную длину кабель-шлангового пакета. Если аппарат нужен для бытовых целей, желательно чтобы он был компактным и удобным для транспортировки.

Аппарат для плазменной резки необходимо приобретать с небольшим запасом по мощности — это увеличит его долговечность.

Краткий обзор моделей

Напоследок вкратце рассмотрим несколько аппаратов, которые получили положительные отзывы от пользователей. К таким относится:

  • FoxWeld Plasma 33 Multi;
  • TelWin Plasma 60 HF;
  • Сварог;
  • Ресанта ИПР-25;
  • Горыныч.
Читайте также:
Процесс гидроизоляции балкона

FoxWeld Plasma 33 Multi

Данная модель представляет собой многофункциональный бытовой аппарат для плазменной резки, работающий от сети 220 В. Главная его особенность заключается в возможности использования в качестве сварочного аппарата для ручной дуговой сварки.

Максимальный ток резки этой модели составляет 30 А. Это позволяет ему перерезать сталь толщиной 8 мм.

Цена данного аппарата составляет 33000 рублей (цена актуальна на весну 2017 г.).

TelWin Plasma 60 HF – качественный плазморез от итальянского производителя

TelWin Plasma 60 HF

Эту модель можно отнести к промышленным, так как она обладает относительно высокой мощностью – сила тока составляет 60 А, к тому же он предназначен для работы от сети 380 В.

Аппарат может резать сталь толщиной до 20 мм. Кроме того, производитель обращает внимание на следующие преимущества модели:

  • Наличие микропроцессора, управляющего многими параметрами аппарата;
  • Возможность регулировки силы тока;
  • Встроенный манометр позволяет следить за давлением воздуха.

Этот плазморез стоит 110 142 рубля.

Сварог CUT-40

Данная модель представляет собой мощный бытовой плазморез, сила тока которого достигает 40 А. Это позволяет ему резать сталь толщиной до 12 мм. ПВ на максимальном токе равняется 60 %, для бытовых аппаратов этот показатель достаточно высокий.

Следует отметить, что несмотря на славянское название «Сварог», данный аппарат производится в Китае. Но, несмотря на это, к его качеству и надежности у пользователей претензий нет.

Стоимость Сварог CUT-40 составляет 33000 рублей.

Ресанта ИПР-25

Ресанта — это еще один бытовой плазморез китайского производства с силой тока 25 А. Производитель утверждает, что этот «малыш» способен резать металл толщиной до 12 мм.

Еще одно достоинство данного аппарата заключается в его относительно низкой стоимости — цена составляет 28 900 рублей.

Горыныч — компактный многофункциональный аппарат от отечественного производителя с водяным охлаждением

Горыныч

Горыныч представляет собой многофункциональный аппарат от отечественного производителя. Помимо плазменной резки ему доступна и электросварка.

Сила тока у Горыныча не большая 3–10 А, что позволяет ему резать металл толщиной до 8 мм. Главная его особенность, помимо многофункциональности, заключается в водяном охлаждении. Это позволяет аппарату беспрерывно работать 25 минут.

Кроме того, он очень компактен — вес устройства не превышает 0,7 кг. Цена находится в пределах 43 000 рублей.

Вывод

Теперь вы знаете, как устроен плазморез, и на что в первую очередь обращать внимание при его выборе. Дополнительно рекомендую просмотреть видео в этой статье. Если какие-то нюансы вам непонятны — пишите комментарии, и я с радостью вам отвечу.

Плазморез: принцип действия, устройство, инструкция по применению +Видео

Плазморез: принцип действия, устройство, инструкция по применению

Что представляет собой плазморез и по какому принципу он работает? Если говорить про данный инструмент, то стоит сразу отметить, что это тот прибор, который используют сварщики, причем далеко не все. Для единоразового использования такой инструмент никогда и нигде не применяют. По этой причине есть инструменты, при помощи которых есть возможность проводить отрезные операции, и при этом не прибегать к использованию дорогого варианта, а именно болгарки. Но если требования к объему и скорости проводимого процесса ужесточенные, то вам никак не обойтись без использования плазмореза.

Именно по этой причине его используют в машиностроительной индустрии, при изготовлении больших конструкций из металла, для резки труб и всего остального.

Разновидности резаков и назначение каждого из них

Много при выборе плазменного резака будет зависеть от того, в какой области вы планируете его использовать. Дело в том, что конструктивные особенности всех видов сильно отличаются между собой – у каждого устройства свой тип зажигания дуги, а также мощность охлаждающей системы.

  1. Инструменты, которые работают в среде газов защитного типа – водород, аргон, гелий, азот и прочие. Такие газы имеют восстанавливающие свойства.
  2. Резаки, которые работают в среде газов окисления. Такие обычное насыщают посредством кислорода.
  3. Приборы, которые используют для работ со смесями.
  4. Резаки, которые работают в стабилизаторах жидкостно-газового типа.
  5. Устройства, которые работают с магнитной и водной стабилизацией. Это особый инструмент, который очень редко используют, поэтому его достаточно трудно найти в свободной продаже.

Есть и другая классификация, которая помогает разделить и купить плазморез по виду оборудования, которое используется для работ.

  • Инверторные – вариант, признанный экономичным, может разрешать детали из металла с толщиной до 3 см.
  • Трансформаторные – такие устройства способны производить резку металла с толщиной до 8 см, вариант сам по себе менее экономичный.

По типу контакта устройства можно поделить на две группы – бесконтактные и контактные. По названию уже легко понять, какие есть методы использования плазменного резака. В первом случае для устройства не требуется контакта с обрабатываемым металлом, причем толщина заготовки может быть любой, тогда как во втором случае требуется контакт с металлом, и его толщина должна быть не меньше 1,8 см.

Еще одна категория – тип использования и возможность питания от электрической энергии. в этом случае есть вде позиции – бытовой резак, который работает от сети с переменным током и стандартным напряжением 220 В, и промышленный, который можно подключать лишь к трехфазной питающей сети с напряжением в 380 В.

Обратите внимание, что даже те резаки, которые имеют минимальную мощность, будут от 4 кВт. По этой причине при его подключении к бытовой электросети для начала удостоверьтесь, что она точно выдержит такую нагрузку.

Такая нагрузка не является единственной, так как в системе резки плазменным устройство используют охлаждение, и для этого в комплект к стандартному оборудованию идет компрессор, который тоже будет работать от сети. Учитывайте и его мощность при подключении к домашнему питанию.

Читайте также:
Резьбовые фитинги: характеристики, разновидности, монтаж

Устройство

Самому названию уже понятно, что процесс резки металла выполняется благодаря плазме, причем последняя представляет собой ионизированный газ с высокой проводимостью электротока. Чем выше будет температура газа, тем выше будет проводимость, а сила разрезания увеличится в значительной мере. Для процесса резки металла используют также воздушно-плазменную дугу. Учтите, что в данном случае ток уже будет иметь непосредственное воздействие на поверхности из металла.

Получается, что принцип действия устройства такой:

  • Металл расплавляют.
  • Его жидкое состояние выдувают из зоны среза.

Ручной плазморез состоит из:

  • Блока питания – это может быть инвертор или сварочный трансформатор.
  • Шлангов.
  • Резака, который изредка называют плазмотроном.
  • Компрессора.

Не будет лишним разобраться, чтобы понять конструктивные особенности резака. Внутри устройства находится установленный электрод, который сделан из редкого металла, например, из гафния, бериллия, циркония и прочего. Почему именно эти металлы? Дело в том, что при нагревании на поверхности данного электрода образуются тугоплавкие виды оксидов. Она являются своеобразной защитой электрода, которая будет обеспечивать целостность материала, т.е. не разрушать. Чаще всего в плазменных резаках устанавливают гафниевые электроды, потому что данный металл не является токсичным и радиоактивным, как, к примеру, бериллий.

Важное значение в конструкции играет сопло – именно через него плазма попадает на резку. Именно от него и будут зависеть основные параметры устройства, а точнее от толщины и длины сопла. Т диаметра будет зависеть мощность потока плазмы, а значит, и скорость среза и ширина срезанной канавки. Конечно, от этого будет зависеть еще и скорость охлаждения. Чаще всего на резаках устанавливают сопло, диаметр которого равен 0,3 см. Длина будет прямопропорционально влиять на качестве среза – чем длиннее, тем лучше. Учтите, что очень длинное сопло будет быстро выходить из строя.

Схема работы плазмореза

Итак, когда вы нажимаете на кнопку розжига, источник электрической энергии автоматически включается, и в резак попадает высокочастотный ток. Из-за этого появляется дежурная дуга между электродом и наконечником сопла. Температура дуги составляет от +6 000 до +8 000 градусов. Следует обратить внимание на то, что дуга между разрезаемым металлом и электродом появляется не сразу, на это требуется время.

После этого в камеру резака начинает поступать воздух, находившийся в компрессоре (сжатый). Воздух начинает нагреваться при прохождении через камеру, в которой расположена дежурная дуга, и его становится больше в 100 раз. Помимо этого он начинает ионизироваться, по сути, превращаясь в токопроводящую среду, хотя воздух сам по себе является диэлектриком.

Сопло, которое сужено до 0,3 см создает плазменный поток, который вылетает из резака с большой скоростью (от 2 до 3 метров в секунду). Температура воздуха, который стал ионизированным, достигает до +30 000 градусов. С такой температурой воздух по проводимости становится таким же, как и проводимость металла. Как только плазма попадает на обрабатываемую поверхность, дежурная дуга выключается, но вместо нее включается рабочая. Плавление металлической заготовки производится в месте среза, откуда жидкий металл сдувается воздухом, который попадает в зону среза. Это и есть схема резки.

Правила выбора инструмента

Люди, которые работали с плазморезом, отметят, что чем больше сила тока, попадающего на электрод, тем быстрее будет процесс. Но есть и некоторые условия, на которые будут влиять и остальные параметры оборудования. Сюда отнесем толщину среза и тип металла. От таких параметров будет зависеть, какое оборудование для работы выбрать, а именно такой из параметров, как сила тока. Чтобы разрезать лист меди с толщиной в 0.2 см, вам нужен будет плазменный резак с силой тока в 12 А.

Обратите внимание, советуем покупать оборудование, которое будет иметь запас силы тока. Обычно указанные параметры при покупке максимальные, а значит, работать на них получится непродолжительное время.

Преимущества и недостатки

Перед тем как сделать выбор и решить, купить плазморез или нет, следует узнать обо всех отрицательных и положительных сторонах оборудования. Так, например, в домашних условиях данное устройство заменимо болгаркой.

Итак, преимущества следующие:

  • Резка на большой скорости, а значит, на процесс будет затрачено не так много времени. По сравнению с остальными режущими инструментами (к примеру, с кислородной горелкой) скорость выше в целых 6 раз. Он уступает только лазерной резке.
  • При помощи плазменного устройства можно разрезать заготовки с большой толщиной, а это не всегда под силу даже болгарке.
  • Может разрезать любые виды металлов, главное, чтобы был правильно выставлен режим работы.
  • Минимальный этап подготовки – поверхности деталей можно зачищать от грязи, ржавчины, масляных пятен, но в этом нет никакого смысла, так как это не помеха для резки.
  • Точность среза высокая, качество тоже. Для ручных устройств чтобы улучшить точность среза часто используют специальные упоры, которые не будут давать резаку смещаться по плоскости. В итоге получается срез без наплывов, тонкий и ровный.
  • Небольшая температура нагревания, исключение – зона среза, поэтому заготовки не подвергаются деформации.
  • Возможность фигурного среза, и хотя таким качеством могут похвастаться и остальные инструменты, но, например, после использования кислородной горелки придется шлифовать края среза и убирать подтеки металла.
  • Проводимая операция безопасна на 100%, так как нет ни одного газового баллона в комплекте к оборудованию.
Читайте также:
Огнеупорный бетон своими руками: приготовление раствора

Недостатки:

  • Высокая стоимость оборудования.
  • Допустимо работать лишь одним резаком.
  • Следует выдерживать направление плазмы аккурат перпендикулярно плоскости обрабатываемой детали. На данный момент в продаже появились аппараты, который могут резать под углом от 15 до 50 градусов.
  • Толщина изделия для разрезания ограничена, поэтому самые мощные экземпляры могут резать металл, толщина которого 10 см. При помощи кислородной горелки вы сможете порезать металл с толщиной в 50 см.

И, тем не менее, плазморез как устройство достаточно востребован. Ручные виды часто используют, но лишь в небольших предприятиях, где нужно выполнять большие объемы резки и к качестве реза предъявлены жесткие требования.

Инструменты

Технология плазменной резки крайне редко применяется в быту, зато в промышленной сфере получила очень широкое распространение. Благодаря тому, что с помощью плазмореза можно легко, быстро и качественно разрезать практически любой токопроводящий металл, а также другие материалы – камень и пластик, его используют в машиностроении, судостроении, коммунальной сфере, изготовлении рекламы, для ремонта техники и многого другого. Срез всегда получается ровным, аккуратным и красивым. Тех, кто только собрался освоить данную технологию, может интересовать резонный вопрос, что собой представляет аппарат плазменной резки, каков принцип его работы, а также какие разновидности плазморезов бывают и для чего используется каждый из них. Все это даст общее понимание технологии плазменной резки, позволит сделать правильный выбор при покупке и освоить работу с аппаратом.

Принцип работы аппарата плазменной резки металла

Как работает плазморез? И что подразумевается под словом «плазма»? Для работы плазмореза необходимо только две вещи – электричество и воздух. Источник энергии подает на резак (плазмотрон) токи высокой частоты, благодаря чему в плазмотроне возникает электрическая дуга, температура которой 6000 – 8000 °С. Затем в плазмотрон направляется сжатый воздух, который на большой скорости вырывается из патрубка, проходит через электрическую дугу, нагревается до температуры 20000 – 30000 °С и ионизируется. Воздух же, который ионизировался, теряет свойства диэлектрика и становится проводником электричества. Плазмой как раз и является этот воздух.

Вырываясь из сопла, плазма локально разогревает заготовку, в которой необходимо выполнить рез, металл плавится. Образованные на лобовой поверхности реза частички расплавленного металла сдуваются потоком воздуха, вырывающимся на огромной скорости. Так происходит резка металла.

Скорость плазменного потока (разогретого ионизированного воздуха) возрастает, если увеличить расход воздуха. Если же увеличить диаметр сопла, через которое плазма вырывается, то скорость уменьшится. Параметры скорости плазмы примерно таковы: на токе 250 А она может быть 800 м/с.

Чтобы рез получился ровным, плазмотрон необходимо держать перпендикулярно плоскости реза, максимальное допустимое отклонение 10 – 50 °. Также большое значение имеет скорость реза. Чем она меньше, тем ширина реза становится больше, а поверхности реза становятся параллельными. То же самое происходит при увеличении силы тока.

Если увеличить расход воздуха, то ширина реза уменьшится, зато кромки реза станут непараллельными.

Устройство аппарата плазменной резки

Аппарат плазменной резки состоит из источника питания, плазмотрона и кабель-шлангового пакета, с помощью которого соединяются источник питания и компрессор с плазмотроном.

Источником питания для аппарата плазменной резки может служить трансформатор или инвертор, которые подают на плазмотрон большую силу тока.

Плазмотрон, собственно, и является главным элементом аппарата – плазменным резаком. Иногда по ошибке весь аппарат называют плазмотроном. Возможно, это связано с тем, что источник питания для плазмореза не отличается никакой уникальностью, а может быть использован вместе со сварочным аппаратом. А единственным элементом, отличающим плазморез от другого аппарата, и является плазмотрон.

Основные составляющие плазмотрона – электрод, сопло и изолятор между ними.

Внутри корпуса плазмотрона находится цилиндрическая камера малого диаметра, выходной канал из которой довольно мал и позволяет формировать сжатую дугу. В тыльной стороне дуговой камеры располагается электрод, служащий для возбуждения электрической дуги.

Электроды для воздушно-плазменной резки могут быть изготовлены из бериллия, гафния, тория или циркония. На поверхности этих металлов образуются тугоплавкие оксиды, предотвращающие разрушение электрода. Но для образования этих оксидов нужны определенные условия. Самыми распространенными являются электроды из гафния. А вот из бериллия и тория их не делают, и виной тому те самые оксиды: оксид бериллия – крайне радиоактивен, а оксид тория – токсичен. Все это может крайне негативно сказаться на работе оператора.

Так как возбуждение электрической дуги между электродом и заготовкой обрабатываемого металла напрямую затруднительно, сначала зажигается так называемая дежурная дуга – между электродом и наконечником плазмотрона. Столб этой дуги заполняет весь канал. После этого в камеру начинает подаваться сжатый воздух, который, проходя сквозь электрическую дугу, нагревается, ионизируется и увеличивается в объеме в 50 – 100 раз. Сопло плазмотрона сужено книзу и формирует из разогретого ионизированного газа/воздуха поток плазмы, вырывающийся из сопла со скоростью 2 – 3 км/с. При этом температура плазмы может достигать 25 – 30 тыс. °С. В таких условиях электропроводимость плазмы становится примерно такой же, как и у обрабатываемого металла.

Когда плазма выдувается из сопла и касается факелом обрабатываемого изделия, образуется режущая плазменная дуга – рабочая, а дежурная дуга гаснет. Если вдруг по какой-то причине рабочая дуга тоже погасла, необходимо прекратить подачу воздуха, снова включить плазмотрон и сформировать дежурную дугу, а затем пустить сжатый воздух.

Сопло плазмотрона может иметь различные размеры и от этого зависят возможности всего плазмотрона и технология работы с ним. Например, от диаметра сопла плазмотрона зависит количество воздуха, которое может проходить сквозь этот диаметр за единицу времени. От количества расхода воздуха зависит ширина реза, скорость работы и скорость охлаждения плазмотрона. В плазморезах используют сопла не больше 3 мм диаметром, зато довольно длинные – 9 – 12 мм. Длина сопла влияет на качество реза, чем длиннее сопло, тем качественнее рез. Но здесь нужно быть осторожным, везде важна мера, так как слишком большое сопло будет быстрее изнашиваться и разрушаться. Оптимальной считается длина, в 1,5 – 1,8 раз больше диаметра сопла.

Читайте также:
Покрасить половую доску

Крайне важно, чтобы катодное пятно фокусировалось строго по центру катода (электрода). Для этого используют вихревую подачу сжатого воздуха/газа. Если вихревая (тангенциальная) подача воздуха нарушена, то катодное пятно будет смещаться относительно центра катода вместе с дугой. Все это может привести к нестабильному горению плазменной дуги, образованию двойной дуги и даже выходу плазмотрона из строя.

В процессе плазменной резки используются плазмообразующие и защитные газы. В аппаратах плазменной резки с силой тока до 200 А (можно разрезать металл толщиной до 50 мм) используют только воздух. В таком случае воздух является плазмообразующим газом и защитным, а также охлаждающим. В сложных промышленных портальных аппаратах используют другие газы – азот, аргон, водород, гелий, кислород и их смеси.

Сопло и электрод в аппарате плазменной резки являются расходными материалами, которые необходимо своевременно заменять, не дожидаясь их полного износа.

В основном плазморезы принято покупать в готовом виде, главное – правильно подобрать нужный агрегат, тогда не придется ничего «доделывать напильником». Хотя в нашем отечестве есть «Кулибины», которые могут сделать аппарат плазменной резки своими руками, закупив некоторые детали отдельно.

Разновидности аппаратов плазменной резки

Плазморезы различают по нескольким различным параметрам. Аппараты плазменной резки могут представлять собой переносные установки, портальные системы, шарнирно-консольные машины, специализированные конструкции и установки с координатным приводом. Особенно выделяются машины плазменной резки с ЧПУ (числовым программным управлением), которые минимизируют вмешательство человека в процесс резки. Но помимо этих существуют и другие градации.

Аппараты для ручной и машинной резки

Ручной аппарат плазменной резки используется для резки металла вручную, когда плазмотрон держит в руках оператор-человек и ведет его по линии реза. В связи с тем, что плазмотрон все время находится на весу над обрабатываемой заготовкой, рука человека может слегка дрогнуть даже в процессе обычного дыхания, все это отражается на качестве реза. На нем могут быть наплывы, неровный рез, следы рывков и т.д. Чтобы облегчить работу оператору, существуют специальные упоры, которые надеваются на сопло плазмотрона. С помощью него можно поставить плазмотрон непосредственно на заготовку и аккуратно вести его. Зазор между соплом и обрабатываемой заготовкой всегда будет одинаковым и соответствующим требованиям.

Аппараты машинной резки представляют собой плазморезы портального типа и аппараты автоматического раскроя деталей и труб. Такие аппараты используются на производстве. Качество реза таким плазморезом получается идеальным, дополнительная обработка кромок не требуется. А программное управление позволяет делать резы различной фигурной формы в соответствии с чертежом без страха дернуть рукой в неподходящий момент. Рез выполняется точно и гладко. На подобные аппараты плазменной резки металла цена на порядок выше, чем на ручные аппараты.

Трансформаторные и инверторные аппараты плазменной резки

Существуют трансформаторные и инверторные плазморезы.

Трансформаторные плазморезы тяжелее инверторных и больше по размеру, зато они более надежны, так как не выходят из строя в случае скачков напряжения. Продолжительность включения таких аппаратов выше, чем у инверторных, и может достигать 100 %. Такой параметр, как продолжительность включения, напрямую влияет на специфику работы с аппаратом. Например, если ПВ равна 40 %, это означает, что 4 минуты резак может работать без перерыва, а затем ему необходимо 6 минут отдыха, чтобы остыть. ПВ 100 % используется в производстве, там, где работа аппарат продолжается весь рабочий день. Недостатком трансформаторного плазмореза является высокое энергопотребление.

С помощью трансформаторных плазменных резаков можно обрабатывать заготовки большей толщины. На подобный аппарат воздушно-плазменной резки цена выше, чем на инверторный. Да и представляет он собой короб на колесиках.

Инверторные аппараты плазменной резки используются чаще в быту и на маленьких производствах. Они намного экономнее в энергопотреблении, обладают меньшим весом и габаритами и чаще всего представляют собой ручной аппарат. Достоинством инверторного плазмореза является стабильное горение дуги и КПД на 30 % выше, компактность и возможность вести работы в труднодоступных местах.

Аппарат воздушно-плазменной резки и водно-плазменной резки

Стоит отметить, что существуют не только аппараты воздушно-плазменной резки, принцип действия которых и устройство были описаны выше, но и аппараты водно-плазменной резки.

Если в воздушно-плазменных резаках воздух выступает и как плазмообразующий, и как защитный, и как охлаждающий газ, то в водно-плазменных резаках вода выступает в качестве охладителя, а водяной пар плазмообразователя.

Достоинствами воздушно-плазменной резки являются низкая цена и небольшой вес, зато недостаток – ограничена толщина разрезаемой заготовки, зачастую не более 80 мм.

Мощность водно-плазменных резаков позволяет разрезать толстые заготовки, зато их цена несколько выше.

Принцип работы аппарата водно-плазменной резки заключается в том, что вместо сжатого воздуха в нем используется водяной пар. Это дает возможность отказаться от использования компрессора для воздуха или газовых баллонов. Водяной пар более вязкий по сравнению с воздухом, поэтому его необходимо намного меньше, запаса в баллончике хватает примерно на месяц-два. Когда в плазмотроне протекает электрическая дуга, в него подается вода, которая испаряется. Одновременно с этим рабочая жидкость поднимает катод отрицательного полюса от катода положительного полюса сопла. В результате загорается электрическая дуга, пар ионизируется. Еще до того, как плазмотрон приблизится к обрабатываемой заготовке, загорается плазменная дуга, которая выполняет резку. Ярким представителем данной категории плазморезов является аппарат Горыныч, на такой аппарат плазменной резки цена около 800 у.е.

Читайте также:
Скороварка: отзывы. Как правильно выбрать и использовать скороварку?
Контактные и бесконтактные аппараты плазменной резки

В зависимости от того, включен разрезаемый материал в электрическую схему плазменной резки или нет, зависит тип резки – контактный и бесконтактный.

Контактная плазменная резка или резка плазменной дугой выглядит так: дуга горит между электродом плазмотрона и обрабатываемой деталью. Это еще называется дугой прямого действия. Столб электрической дуги совмещен с плазменной струей, которая вырывается из сопла на большой скорости. Продуваемый через сопло плазмотрона воздух обжимает дугу и придает ей проникающие свойства. За счет высокой температуры воздуха 30000 °С, повышается скорость его истечения и плазма оказывает сильной механическое воздействие на выдуваемый металл.

Контактный тип резки применяется при работах с металлами, которые могут проводить электричество. Это изготовление деталей с прямолинейными и криволинейными контурами, резка труб, полос и прутков, выполнение отверстий в заготовках и многое другое.

Бесконтактная плазменная резка или резка плазменной струей выглядит так: электрическая дуга горит между электродом и формирующим наконечником плазмотрона, часть плазменного столба выносится за пределы плазмотрона через сопло и представляет собой высокоскоростную плазменную струю. Именно данная струя и является режущим элементом.

Бесконтактная резка используется при работе с нетокопроводящими материалами (неметаллами), например, камнем.

Работа с аппаратом плазменной резки и технология воздушно-плазменной резки – это целое искусство, требующее знаний, терпения и соблюдения всех правил и рекомендаций. Знание и понимание устройства плазмореза помогает выполнять работу качественно и аккуратно, так как оператор понимает, какие процессы происходят в плазмотроне и за его пределами в тот или иной момент, и может ими управлять. Также немаловажно соблюдать все меры предосторожности и технику безопасности, например, работать с плазморезом необходимо в костюме сварщика, в щитке, перчатках, в закрытой обуви и плотных штанах из натуральной ткани. Некоторые окислы, выделяемые в процессе резки металла, могут нанести непоправимый вред легким человека, поэтому необходимо работать в защитной маске или хотя бы обеспечить хорошую вентиляцию в рабочей зоне.

Плазморез: принцип действия, устройство, инструкция по применению

Плазморез: принцип действия, устройство, инструкция по применению

Что представляет собой плазморез и по какому принципу он работает? Если говорить про данный инструмент, то стоит сразу отметить, что это тот прибор, который используют сварщики, причем далеко не все. Для единоразового использования такой инструмент никогда и нигде не применяют. По этой причине есть инструменты, при помощи которых есть возможность проводить отрезные операции, и при этом не прибегать к использованию дорогого варианта, а именно болгарки. Но если требования к объему и скорости проводимого процесса ужесточенные, то вам никак не обойтись без использования плазмореза.

Именно по этой причине его используют в машиностроительной индустрии, при изготовлении больших конструкций из металла, для резки труб и всего остального.

  • 1 Разновидности резаков и назначение каждого из них
  • 2 Устройство
  • 3 Схема работы плазмореза
  • 4 Правила выбора инструмента

Разновидности резаков и назначение каждого из них

Много при выборе плазменного резака будет зависеть от того, в какой области вы планируете его использовать. Дело в том, что конструктивные особенности всех видов сильно отличаются между собой – у каждого устройства свой тип зажигания дуги, а также мощность охлаждающей системы.

  1. Инструменты, которые работают в среде газов защитного типа – водород, аргон, гелий, азот и прочие. Такие газы имеют восстанавливающие свойства.
  2. Резаки, которые работают в среде газов окисления. Такие обычное насыщают посредством кислорода.
  3. Приборы, которые используют для работ со смесями.
  4. Резаки, которые работают в стабилизаторах жидкостно-газового типа.
  5. Устройства, которые работают с магнитной и водной стабилизацией. Это особый инструмент, который очень редко используют, поэтому его достаточно трудно найти в свободной продаже.

Есть и другая классификация, которая помогает разделить и купить плазморез по виду оборудования, которое используется для работ.

  • Инверторные – вариант, признанный экономичным, может разрешать детали из металла с толщиной до 3 см.
  • Трансформаторные – такие устройства способны производить резку металла с толщиной до 8 см, вариант сам по себе менее экономичный.

По типу контакта устройства можно поделить на две группы – бесконтактные и контактные. По названию уже легко понять, какие есть методы использования плазменного резака. В первом случае для устройства не требуется контакта с обрабатываемым металлом, причем толщина заготовки может быть любой, тогда как во втором случае требуется контакт с металлом, и его толщина должна быть не меньше 1,8 см.

Еще одна категория – тип использования и возможность питания от электрической энергии. в этом случае есть вде позиции – бытовой резак, который работает от сети с переменным током и стандартным напряжением 220 В, и промышленный, который можно подключать лишь к трехфазной питающей сети с напряжением в 380 В.

Обратите внимание, что даже те резаки, которые имеют минимальную мощность, будут от 4 кВт. По этой причине при его подключении к бытовой электросети для начала удостоверьтесь, что она точно выдержит такую нагрузку.

Такая нагрузка не является единственной, так как в системе резки плазменным устройство используют охлаждение, и для этого в комплект к стандартному оборудованию идет компрессор, который тоже будет работать от сети. Учитывайте и его мощность при подключении к домашнему питанию.

Устройство

Самому названию уже понятно, что процесс резки металла выполняется благодаря плазме, причем последняя представляет собой ионизированный газ с высокой проводимостью электротока. Чем выше будет температура газа, тем выше будет проводимость, а сила разрезания увеличится в значительной мере. Для процесса резки металла используют также воздушно-плазменную дугу. Учтите, что в данном случае ток уже будет иметь непосредственное воздействие на поверхности из металла.

Читайте также:
Садовые инструменты своими руками: делаем самодельные инструменты для дачи по инструкции

Получается, что принцип действия устройства такой:

  • Металл расплавляют.
  • Его жидкое состояние выдувают из зоны среза.

Ручной плазморез состоит из:

  • Блока питания – это может быть инвертор или сварочный трансформатор.
  • Шлангов.
  • Резака, который изредка называют плазмотроном.
  • Компрессора.

Не будет лишним разобраться, чтобы понять конструктивные особенности резака. Внутри устройства находится установленный электрод, который сделан из редкого металла, например, из гафния, бериллия, циркония и прочего. Почему именно эти металлы? Дело в том, что при нагревании на поверхности данного электрода образуются тугоплавкие виды оксидов. Она являются своеобразной защитой электрода, которая будет обеспечивать целостность материала, т.е. не разрушать. Чаще всего в плазменных резаках устанавливают гафниевые электроды, потому что данный металл не является токсичным и радиоактивным, как, к примеру, бериллий.

Важное значение в конструкции играет сопло – именно через него плазма попадает на резку. Именно от него и будут зависеть основные параметры устройства, а точнее от толщины и длины сопла. Т диаметра будет зависеть мощность потока плазмы, а значит, и скорость среза и ширина срезанной канавки. Конечно, от этого будет зависеть еще и скорость охлаждения. Чаще всего на резаках устанавливают сопло, диаметр которого равен 0,3 см. Длина будет прямопропорционально влиять на качестве среза – чем длиннее, тем лучше. Учтите, что очень длинное сопло будет быстро выходить из строя.

Схема работы плазмореза

Итак, когда вы нажимаете на кнопку розжига, источник электрической энергии автоматически включается, и в резак попадает высокочастотный ток. Из-за этого появляется дежурная дуга между электродом и наконечником сопла. Температура дуги составляет от +6 000 до +8 000 градусов. Следует обратить внимание на то, что дуга между разрезаемым металлом и электродом появляется не сразу, на это требуется время.

После этого в камеру резака начинает поступать воздух, находившийся в компрессоре (сжатый). Воздух начинает нагреваться при прохождении через камеру, в которой расположена дежурная дуга, и его становится больше в 100 раз. Помимо этого он начинает ионизироваться, по сути, превращаясь в токопроводящую среду, хотя воздух сам по себе является диэлектриком.

Сопло, которое сужено до 0,3 см создает плазменный поток, который вылетает из резака с большой скоростью (от 2 до 3 метров в секунду). Температура воздуха, который стал ионизированным, достигает до +30 000 градусов. С такой температурой воздух по проводимости становится таким же, как и проводимость металла. Как только плазма попадает на обрабатываемую поверхность, дежурная дуга выключается, но вместо нее включается рабочая. Плавление металлической заготовки производится в месте среза, откуда жидкий металл сдувается воздухом, который попадает в зону среза. Это и есть схема резки.

Правила выбора инструмента

Люди, которые работали с плазморезом, отметят, что чем больше сила тока, попадающего на электрод, тем быстрее будет процесс. Но есть и некоторые условия, на которые будут влиять и остальные параметры оборудования. Сюда отнесем толщину среза и тип металла. От таких параметров будет зависеть, какое оборудование для работы выбрать, а именно такой из параметров, как сила тока. Чтобы разрезать лист меди с толщиной в 0.2 см, вам нужен будет плазменный резак с силой тока в 12 А.

Обратите внимание, советуем покупать оборудование, которое будет иметь запас силы тока. Обычно указанные параметры при покупке максимальные, а значит, работать на них получится непродолжительное время.

Преимущества и недостатки

Перед тем как сделать выбор и решить, купить плазморез или нет, следует узнать обо всех отрицательных и положительных сторонах оборудования. Так, например, в домашних условиях данное устройство заменимо болгаркой.

Итак, преимущества следующие:

  • Резка на большой скорости, а значит, на процесс будет затрачено не так много времени. По сравнению с остальными режущими инструментами (к примеру, с кислородной горелкой) скорость выше в целых 6 раз. Он уступает только лазерной резке.
  • При помощи плазменного устройства можно разрезать заготовки с большой толщиной, а это не всегда под силу даже болгарке.
  • Может разрезать любые виды металлов, главное, чтобы был правильно выставлен режим работы.
  • Минимальный этап подготовки – поверхности деталей можно зачищать от грязи, ржавчины, масляных пятен, но в этом нет никакого смысла, так как это не помеха для резки.
  • Точность среза высокая, качество тоже. Для ручных устройств чтобы улучшить точность среза часто используют специальные упоры, которые не будут давать резаку смещаться по плоскости. В итоге получается срез без наплывов, тонкий и ровный.
  • Небольшая температура нагревания, исключение – зона среза, поэтому заготовки не подвергаются деформации.
  • Возможность фигурного среза, и хотя таким качеством могут похвастаться и остальные инструменты, но, например, после использования кислородной горелки придется шлифовать края среза и убирать подтеки металла.
  • Проводимая операция безопасна на 100%, так как нет ни одного газового баллона в комплекте к оборудованию.

Недостатки:

  • Высокая стоимость оборудования.
  • Допустимо работать лишь одним резаком.
  • Следует выдерживать направление плазмы аккурат перпендикулярно плоскости обрабатываемой детали. На данный момент в продаже появились аппараты, который могут резать под углом от 15 до 50 градусов.
  • Толщина изделия для разрезания ограничена, поэтому самые мощные экземпляры могут резать металл, толщина которого 10 см. При помощи кислородной горелки вы сможете порезать металл с толщиной в 50 см.

И, тем не менее, плазморез как устройство достаточно востребован. Ручные виды часто используют, но лишь в небольших предприятиях, где нужно выполнять большие объемы резки и к качестве реза предъявлены жесткие требования.

Плазменная резка: устройство и работа плазмореза

Плазменная резка является одной из наиболее эффективных и современных сварочных технологий, которая даёт возможность использовать плазморез при работе как с металлом, так и с материалами, которые не проводят ток (дерево, пластик, камень).

Читайте также:
Скороварка: отзывы. Как правильно выбрать и использовать скороварку?

Плазменная резка получила широкое распространение в разных сферах деятельности: ЖКХ, строительство, промышленность. Важнейшим устройством при плазменной резке является, конечно, сам плазморез, который продуцирует дугу. Сама дуга формируется плазмой особо высокой температуры.

С помощью плазменной дуги становится возможной высокоточная работа. Например, рез может быть осуществлен не только по прямым линиям, но и под разным углом, что позволяет делать сложные фигуры на металле.

Устройство плазмореза

Плазморезка состоит из следующих составляющих:

  • Блок питания, отвечающий за подачу электрического тока. Могут использоваться как трансформаторы, так и инверторы.

Трансформаторы массивны, но зато почти не страдают от колебаний напряжения, а также позволяют производить плазменную резку металла большой толщины.

Инвертор хорош тогда, когда резчик производит манипуляции с не очень толстым металлом. Инвертор заметно меньше потребляет электроэнергии, а также обладает высоким КПД (коэффициент полезного действия). Он прекрасно подойдет для частного хозяйства.

  • Плазмотрон — основной элемент в плазморезе. Им ведется резка заготовок.

Под корпусом плазмотрона скрыт электрод, который формирует мощную плазменную дугу. Сам электрод изготовлен из тугоплавкого металла, который предохраняет его от разрушения при высокотемпературных нагрузках. Чаще всего применяют электроды, сделанные из гафния.

На конце плазмотрона находится сопло, которое формирует струю плазмы, с легкостью разрезающую заготовку.

Производительность и мощность плазмореза, во многом определяется именно диаметром сопла. Чем больше диаметр сопла, тем большее количество воздуха оно пропускает за единицу времени, а увеличение объемов воздуха непосредственно увеличивает производительность. Наиболее распространенный диаметр – 3 миллиметра.

Точность работы зависит от конфигурации сопла, для проведения наиболее тонкой работы следует подбирать удлиненный элемент.

3. Компрессор.

Компрессор под давлением нагнетает воздух, без которого плазморез просто не будет работать. Процесс построен на использовании газа для создания плазменной струи и защиты.

Если сила тока плазморезательной машины ограничена 200 амперами, то достаточно лишь просто сжатого воздуха. Он отведет лишнее тепло и сформирует плазменную струю. Покупка и использование данного плазмореза является эффективной, если работа будет проводиться с металлом толщиной до 5 см.

В промышленности используют плазменные резаки с концентрированными газовыми смесями, в основе которых гелий, водород, азот.

4. Кабели и шланги. Они соединяют все модули между собой. По шлангам проходит сжатый воздух, через кабели — электрический ток.

Предлагаем к просмотру видео об устройстве и принципе работы плазмореза.

Как работает плазморез

Включая плазморез через клавишу розжига электрический ток подается на плазмотрон. Формируется первичная плазменная дуга, температура которой равняется 6-8 тыс. градусов.

К первичной дуге подается воздух, отчего при контакте с дугой температура последнего постепенно возрастает, а объем увеличивается. Увеличение объема может доходить до стократного. При нагреве воздух ионизируется и теряет свойства диэлектрика.

Из-за конструктивных особенностей сопла плазмореза (сужается к окончанию) поток воздуха достигает скорости в 2-3 м. в секунду и на выходе имеет температуру 28-30 тысяч градусов. Такой воздух называется плазмой.

Когда плазморез соприкасается с деталью, первичная дуга угасает, а последующая работа ведется уже новообразованной плазменной дугой. Как раз таки она и плавит металл. Ровность реза объясняется мощным воздушным потоком, сдувающим с поверхности заготовки все шероховатости.

Применение плазмореза

Плазморезом можно производить следующие операции:

  • Продуктивный рез большого количества материалов.
  • Создание листовых деталей, которые характеризуются сложностью геометрии, вплоть до ювелирной и приборостроительной отраслей, где необходимо максимальное соответствие исходным чертежам.

Штамповка уступает резу плазмой, так как она хоть и недорогая, но не способна обеспечивать необходимую точность. Плазморез же, несмотря на огромную температуру струи, режет заготовку точечно, по шаблону, что практически целиком исключает вероятность температурной деформации.

  • Плазморез удобен при монтаже металлоконструкций. При работе с ним не требуются баллоны с ацетиленом и кислородом, что заметно увеличивает безопасность и удобство работы на высоте.
  • Эффективность при резке высоколегированных сталей. Обычные способы резки в данном случае не подходят из-за огромной прочности сталей, а спец. инструмент обойдется дорого и будет быстро изнашиваться.

Вывод: сферы использования плазморезательной машины разнообразны. Рез отверстий любой конфигурации, резка труб, уголков и заготовок различного сечения, обработка кромок кованых изделий с целью “спаивания” металла и закрытия его структуры – для всего этого плазморез подходит оптимально.

Плазморез: инструкция

Чтобы работать плазморезательной машиной эффективно и безопасно, необходимо соблюдать несколько простых правил:

  1. Следите за расположением катодного пятна. Оно должно быть по центру электрода. Если катодное пятно отклонится, то это может привести к тому, что горение плазмы будет нестабильным, дуга сместится. В запущенных случаях плазменный резак может выйти из строя.
  2. Контролируя расход воздуха, оператор может корректировать скорость выхода плазмы из сопла
  3. Скорость потока плазмы напрямую влияет на толщины реза. При высокой скорости рез получается тонким, а при меньшей — толще. Кроме того, на толщину реза аналогичным образом влияет сила тока.

Видеоурок работы с плазморезательной машиной

Заключение

С Вами мы разобрали предназначение, устройство и принцип работы плазмореза.

Подытожив можно сказать, что плазморез является универсальным инструментом для резки металла и не только. Ему по плечу: трубы, арматура и т.д., высокоточная резка. Если мастер часто сталкивается с необходимостью реза металла, пластика и даже камня(!), то приобретение плазмореза будет как нельзя кстати!

Принцип работы плазмореза

Плазменная резка. Принцип работы

Плазменная резка осуществляется аппаратом под названием плазморез. Он создаёт поток высокотемпературного ионизированного воздуха (плазмы), который разрезает заготовку.

Принцип плазменной резки основан на свойстве воздуха в состоянии ионизации становиться проводником электрического тока.

Плазморез создаёт в плазмотроне плазму (ионизированный воздух, разогретый до высокой температуры) и сварочную дугу, которые осуществляют раскрой материала.

Читайте также:
Процесс гидроизоляции балкона

Устройство плазмореза

Плазморез состоит из нескольких блоков:

  • источник электропитания;
  • плазмотрон (резак);
  • компрессор;
  • комплект кабель-шлангов.

Источник электропитания

Источником электропитания может быть:

  • трансформатор. Достоинством его является то, что он практически не чувствителен к перепадам напряжения электросети и позволяет резать заготовки большой толщины, а недостатком – значительный вес и низкий КПД;
  • инвертор. Единственным его недостатком является то, что он не позволяет резать заготовки большой толщины. Достоинств много:
    • при питании от него стабильно горит дуга;
    • КПД на 30 % выше, чем у трансформатора;
    • дешевле, экономичнее и легче трансформатора;
    • его удобно использовать в труднодоступных местах.

Принцип работы

Принцип действия плазмотрона заключается в следующем.

Создаётся поток высокотемпературного ионизированного воздуха, электропроводность которого равна электропроводности разрезаемой заготовки (т.е. воздух перестаёт быть изолятором и становится проводником электрического тока).

Образуется электрическая дуга, которая локально разогревает обрабатываемую заготовку: металл плавится и появляется рез. Температура плазмы в этот момент достигает 25000 – 30000 °С. Появляющиеся на поверхности разрезаемой заготовки частички расплавленного металла будут сдуваться с нее потоком воздуха из сопла.

Технология

Плазменной обработке поддаются все виды металлов толщиой до 220 мм.

Эффект появляется после воспламенения плазмообразующего газа при образовании искры в контуре электрической дуги.

В выходном отверстии от сужения происходит ускорение потока плазмообразующего носителя. Высокоскоростная плазменная струя позволяет получить температуру на выходе около 20000 °С.

Узконаправленная струя в тысячи градусов буквально проплавляет материал в точечной области воздействия, нагрев вокруг места обработки незначительный.

Резка плазменной струей

Раскрой заготовок плазменной струей применяется для обработки материалов, не проводящих электрический ток.

При резке этим методом дуга горит между формирующим наконечником плазмотрона и электродом, а сам разрезаемый объект в электрической цепи не участвует.

Для разрезания заготовки используется струя плазмы.

Плазменно-дуговая резка

Плазменно-дуговой резкеподвергаются токопроводящие материалы.

При выполнении резки этим методом дуга горит между разрезаемой заготовкой и электродом, её столб совмещен со струей плазмы.

Последняя образуется за счет поступления газа, его нагрева и ионизации.

Газ, продуваемый через сопло, обжимает дугу, придает ей проникающие свойства и обеспечивает интенсивное плазмообразование.

Высокая температура газа создает высочайшую скорость истечения и увеличивает активное воздействие плазмы на плавящийся металл.

Газ выдувает из зоны реза капли металла. Для активизации процесса используется дуга постоянного тока прямой полярности.

Плазменно-дуговая резка применяется при:

  • производстве деталей с прямолинейными и фигурными контурами;
  • вырезании отверстий или проемов в металле;
  • изготовлении заготовок для сварки, штамповки и механической обработки;
  • обработке кромок поковок;
  • резке труб, полос, прутков и профилей;
  • обработке литья.

Виды плазменной резки

В зависимости от среды, существуют три вида плазменной резки:

  • простой. Этот метод подразумевает использование только воздуха (или азота) и электрического тока;
  • с защитным газом. Применяются два вида газа: плазмообразующий и защитный, который сохраняет зону реза от влияний окружающей среды. В результате повышается качество реза;
  • с водой. В этом случае вода выполняет функцию, аналогичную защитному газу, охлаждает компоненты плазмотрона и поглощает вредные выделения.
Видео

Посмотрите ролики, где наглядно объясняется, как происходит плазменная резка.

Типы плазмотронов

Плазмотроны можно условно разделить на три типа:

  1. электродуговые;
  2. высокочастотные;
  3. комбинированные.

Возможности плазменной резки

Сфера применения плазменной резки очень разнообразна, благодаря своей универсальности и диапазону обрабатываемых металлов и металлических сплавов. Автоматизированная и ручная плазменная резка материалов широко применяется на предприятиях и во многих отраслях промышленности для выполнения обработки:

  • труб;
  • истового металла;
  • чугуна;
  • стали (в т.ч. нержавеющей);
  • бетона;
  • отверстий;
  • фигурной и художественной резки.

Как работает аппаратная плазменная резка металла

  • Источник тока выдает необходимое напряжение, а именно: 220 V для небольших устройств, 380 V для промышленных систем, позволяющих работать с материалами большой толщины.
  • Ток по кабелям попадает в плазмотрон. Он оснащен катодом и анодом, роль которых играют электроды. Именно между ними загорается электрическая дуга.
  • Компрессор нагнетает воздух и подает его в аппарат по предусмотренным для этого шлангам. Плазмотрон снабжен специальными завихрителями, которые направляют и закручивают воздух. Поток пронизывает электрическую дугу, при этом ионизирует ее и во много раз повышает температуру, создавая плазму.
  • Когда сварщик-резчик подносит плазмотрон к изделию, получается рабочая дуга – она замыкается между электродом и поверхностью. За счет высокой температуры и давления воздуха образуется аккуратный разрез и небольшие наплывы, которые можно без труда удалить при помощи постукивания. Когда утрачивается контакт с поверхностью, дуга продолжает гореть в дежурном режиме.
  • После того как раскрой завершен, кнопку на плазмотроне отпускают, выключая все виды электрической дуги. Далее систему некоторое время продувают воздухом, чтобы избавиться от мусора и позволить электродам остыть.

Роль режущего элемента при плазменной резке играет ионизированная дуга плазмотрона. Она позволяет как раскраивать материал, так и сваривать его. Во втором случае применяют присадочную проволоку, состав которой подбирается под конкретный вид металла, а подаваемый воздух заменяют инертным газом.

Как устроен плазморез

Этот аппарат состоит из следующих элементов:

  • источник питания;
  • воздушный компрессор;
  • плазменный резак или плазмотрон;
  • кабель-шланговый пакет.

Источник питания для аппарата плазменной резки осуществляет подачу на плазмотрон определенной силы тока. Представляет собой инвертор или трансформатор.

Компрессор требуется для подачи воздуха.

Кабель-шланговый пакет используется для соединения компрессора, источника питания и плазмотрона. По электрическому кабелю от инвертора или трансформатора начинает поступать ток для возбуждения электрической дуги, а по шлангу осуществляется подача сжатого воздуха, который требуется для возникновения внутри плазмотрона плазмы.

Плазматроны для резки металла: конструкция, виды, правила выбора

Плазматроны – устройства для плазменной резки металла, которая считается одним из самых эффективных способов раскроя профильного и листового металлопроката. С ее помощью режут черные и цветные виды металлов. Также этот метод используется для скоса кромок перед сваркой толстостенных заготовок.

Читайте также:
Поделки из туалетной бумаги (еще немного)

Что это такое?

Плазмотрон представляет собой устройство для генерации плазмы – ионизированного газа с квазинейтральными свойствами, используемого для обработки металлов. В его конструкции электрический ток и плазмообразующий газ используются для образования и стабилизации плазменной струи.

Рисунок 1. Плазматроны для ручных аппаратов и агрегатов с ЧПУ

Конструкция

Конструктивно плазмотроны для резки листового металла и металлических заготовок состоят из таких компонентов:

  • сопло;
  • электрод;
  • элемент для завихрения воздушного потока (завихритель);
  • фторопластовый корпус;
  • гайка сопла;
  • изоляционная втулка;
  • электродный узел;
  • кожух.

Рисунок 2. Стандартная конструкция плазмотрона

Устройство

Назначение основных элементов плазмотрона:

  • Сопло – представляет собой наконечник резака, служит для формирования формы плазменной струи. Обычно изготавливается из меди, конструкция определяется разновидностью машины для плазменной резки.

Фото 3. Внешний вид сопла

  • Электрод (катод) – используется для поджига и подержания плазменной дуги. Производится из тугоплавкого металла и имеет вставку из циркония или гафния. Подбирается в зависимости от оборудования и разрезаемого материала.

Фото 4. Внешний вид катода

  • Завихритель (диффузор) – необходим для увеличения давления и замедления потока плазмы в ходе процесса резки.

Фото 5. Завихрители

Принцип действия

Принцип работы плазмотронов заключается в подаче плазмообразующего газа в разрядную камеру (здесь происходит его ионизация) и вынесении плазменной струи за пределы промежутка между соплом и катодом на поверхность разрезаемого металла.

Рисунок 6. Конструктивная схема работы плазматрона с водяным охлаждением

Процесс плазменной резки начинается с поджига дежурной (пилотной) дуги между катодом и соплом в результате подачи высокого напряжения. Она служит для создания основной (режущей) дуги при касании к металлической заготовке.

Небольшое отверстие в сопле формирует плазменную струю направленного действия, истекающую со скоростью до 3 км/секунду. При этом температура струи достигает 5000-30000 °C. Направленное воздействие плазмы обеспечивает мгновенный нагрев металла до его плавления и выдувает из зоны реза.

Для получения детали заданных размеров и формы плазмотрон направляется по определенному контуру. При резке важно поддерживать постоянный зазор между разрезаемым материалом и соплом, что позволяет получить ровные кромки с минимальным количеством шлака и окалины.

Фото 7. Процесс вырезания заготовок сложной конфигурации машиной с числовым программным управлением

Сфера применения, плюсы и минусы плазменной резки

Плазмотроны широко применяются в таких отраслях:

  • тяжелое машиностроение;
  • автомобиле-, авиа-, судостроение;
  • металлургия;
  • заводы и фирмы по металлообработке;
  • предприятия и компании по изготовлению металлоконструкций;
  • строительная промышленность.

Технология плазменного раскроя металла обладает множеством преимуществ:

  • Большая скорость резки – в 5-10 раз выше по сравнению с газокислородным резанием.
  • Быстрый прожиг материала – время прожига стального листа толщиной 15 мм составляет в пределах 2 сек.
  • Минимальная зона термического влияния – исключает вероятность деформации заготовок, что особенно актуально при резании тонколистового металла.
  • Повышенное качество реза – струя плазмы минимизирует количество окалины и шлака, поэтому дополнительная обработка кромок обычно не требуется.
  • Высокая точность – минимальная ширина реза и применение специальных приспособлений для автоматизации позволяют получить заготовки с максимально точной конфигурацией и размерами.
  • Универсальность – этот метод применяется для фигурного и прямолинейного резания сталей любых марок, цветных металлов, а также их сплавов.
  • Возможность автоматизации – можно купить как ручной аппарат, так и более производительную машину с ЧПУ.
  • Простота в обслуживании и эксплуатации.

В отличие от воздушно-дуговой резки, где рабочие параметры определяются скоростью истекания воздуха в минуту и видом используемого газа, стабильность процесса раскроя струей плазмы и качество реза зависят от правильного выбора плазмообразующего газа, силы тока, поддержания постоянного зазора между соплом и обрабатываемым материалом.

Фото 8. Процесс вырезания деталей ручным плазморезом

Порядок эксплуатации

Изначально нужно подготовить плазморез к работе – в зависимости от вида он работает от сети 220 или 360 В. Последовательность подготовки следующая:

  1. Устройство устанавливается в месте, где обеспечен хороший доступ воздуха, при этом на него не должны попадать брызги расплавленного металла в процессе работы.
  2. Работать с оборудованием нужно в проветриваемом помещении, оборудованном в соответствии с правилами пожарной безопасности. Аппарат должен быть защищен от случайного попадания влаги – с этой целью его часто оборудуют даже влагомаслоотделителем во избежание их попадания в конструкцию плазмотрона, что ведет к уменьшению срока службы расходных материалов.
  3. Разрезаемый металлопрокат желательно тоже подготовить – лакокрасочное покрытие и коррозия приводят к повышенному дымовыделению, но на качество реза не влияют.
  4. Периодически требуется проверять целостность, чистоту электрода и сопла. Периодичность зависит от интенсивности эксплуатации – так, при постоянной работе они могут требовать замены уже после 8-часовой рабочей смены.

Качественный рез без наплывов и окалины возможен только при условии правильного выбора силы тока. Подбирается она с учетом вида разрезаемого металла и толщины. Зависимость силы тока для разрезания заготовок толщиной 1 мм из таких материалов:

  • Конструкционная сталь и чугун – 4 А.
  • Цветные металлы и их сплавы – 6 А.

Также на качество реза влияет и скорость ведения резака. Она может достигать 0,2-2 м/минуту и зависит от толщины, вида материала, установленной силы тока. В автоматизированном оборудовании скорость задается программой, а при ручном процессе за это отвечает резчик.

Перед началом работы нужно продуть плазмотрон для удаления инородных частиц и конденсата – для этого следует нажать кнопку поджига и выждать примерно полминуты. Затем можно поджигать дежурную дугу, она горит до 2 секунд, после чего зажигается рабочая плазменная дуга.

Важным моментом при плазменной резке является поддержание постоянного расстояния между соплом и обрабатываемым металлом (обычно 1,6-3 мм) – это влияет на стабильность горения рабочей дуги и качество реза. Однако в продаже есть специальные направляющие для ручных резаков, что значительно облегчает рабочий процесс и увеличивает производительность труда.

Читайте также:
Система оповещения пожарной сигнализации: принцип действия и назначение

Фото 9. Направляющее приспособление для поддержания постоянного зазора между соплом и заготовкой.

При работе сопло резака должно быть расположено перпендикулярно разрезаемому металлу или под небольшим углом (отклонение до 10-50°) при раскрое материалов толщиной до 25 % от максимально допустимой для конкретного оборудования. Такой прием позволит минимизировать риски деформации тонколистовых заготовок.

Виды плазморезов

Плазмотроны для плазменной резки металлов выпускаются разных модификаций по типу резки, поджига дуги, с различными рабочими параметрами.

Плазморезы по типу резки

По виду резки различают ручные аппараты и автоматические машины с ЧПУ. Здесь все зависит от выполняемых работ, максимальной толщины разрезаемого металла.

Плазморезы для ручной резки

Плазмотроны для ручной резки применяются в разных отраслях деятельности – от небольших автомастерских до промышленных предприятий. Процесс раскроя предполагает ведение резака вручную – т.е. резчик самостоятельно регулирует скорость реза.

Фото 10. Ручная плазменная резка

Ручной процесс резания не обеспечивает такой высокой точности и производительности, как автоматический. Однако аппараты более компакты, что обеспечивает возможность их транспортировки. Инверторные устройства можно переносить даже вручную, так как их вес не превышает 15-20 кг.

Плазморезы для автоматической резки

Плазматроны для автоматической резки отличаются конструкцией – она зависит от типа оборудования, на которое будет устанавливаться устройство. Автоматический процесс раскроя отличается повышенной производительностью, обычно выполняется на специальном столе, на который укладываются листы разрезаемого металла. Также машины бывают портативного типа для резания небольших заготовок. Управляются ЧПУ (числовым программным управлением), что минимизирует человеческий фактор.

Фото 11. Автоматическая плазменная резка

  • высокая скорость резания;
  • повышенная точность и качество реза;
  • автоматизированная настройка рабочих параметров (силы тока, давления газа, расстояния между соплом и заготовкой) с учетом толщины и марки металла.

Плазморезы по типу используемого газа

Плазмотроны работают с разными газами – инертными, восстановительными, химически активными и их смесями. Выбираются они в зависимости от марки обрабатываемого металла:

  • Сжатый воздух – черные металлы и медь толщиной до 60 мм, алюминий до 70 мм.
  • Азот – алюминий и медь толщиной до 20 мм, малоуглеродистые низколегированные стали до 30 мм, с высоким содержанием легирующих элементов до 75 мм, латуни до 90 мм, титан неограниченной толщины.
  • Азотоводород – медь, алюминий и их сплавы толщиной до 100 мм.
  • Смесь на основе азота и аргона – высоколегированные материалы толщиной до 50 мм.
  • Аргон и водород – высоколегированные стали, алюминиевые и медные сплавы толщиной до 100 мм.

Плазморезы по типу поджига дуги

Производятся с дугой прямого и косвенного действия. Дуга прямого действия возбуждается в результате протекания электрического тока между катодом (неплавящимся электродом) и анодом, в качестве которого выступает металлическая заготовка. Дуга косвенного действия поджигается между катодом и соплом, но такие устройства применяются гораздо реже.

Рисунок 12. Схемы плазмотронов прямого и косвенного действия

Плазморезы по типу охлаждения

Охлаждение плазмотронов может быть следующих типов:

  • Водяное – оборудуются в основном профессиональные модификации, непрерывно работающие на протяжении длительного времени. Циркуляция жидкости в них обеспечивается специальным насосом.
  • Воздушное – оснащаются полупрофессиональные и бытовые модели. Внутренние элементы горелок охлаждаются за счет прохождения сжатого воздуха или газа по каналам. Такие устройства отличаются меньшим ПВ, в процессе работы требуются перерывы.

Как выбрать плазморез?

Выбор плазматрона для резки металла выполняется по рабочим характеристикам с учетом выполняемых работ (габаритов, толщины и типа металлопроката).

Толщина разрезаемого металла и сила тока

Предполагаемая толщина обрабатываемого металла влияет на номинальную силу тока оборудования – например, чтобы резать черный металл и нержавейку, на каждый 1 мм толщины нужно 4 А мощности. Поэтому для раскроя листовой конструкционной стали 10 мм нужно выставить рабочий ток в 40 А. При этом покупать плазморез лучше с небольшим запасом по мощности.

Продолжительность включения

ПВ или продолжительность включения определяет время непрерывной работы устройства. Если в технических характеристиках плазмореза указано ПВ 60 %, то это значит, что из рабочего цикла 10 минут он может непрерывно работать 6 минут. При превышении этого порога вероятен перегрев и выход из строя.

Рекомендуемые значение ПВ в зависимости от сферы применения:

  • Бытовые нужды – достаточно ПВ 40 %.
  • Мастерские, небольшие компании по металлообработке – ПВ 60 %.
  • Крупные заводы, предприятия по изготовлению металлоконструкций – ПВ 80-100 %.

Необходимая мощность компрессора

От мощности компрессора напрямую зависит стабильность процесса плазменной резки. Поэтому аппарат должен обладать большей на 20-25 % производительностью, чем указано в паспорте плазмореза. Также желательно, чтобы он был оборудован масловлагоотделителем для исключения влияния конденсата и примесей на качество плазмы.

Длина шлангпакета

Длина шлангпакета может составлять от 1,5 до 8 и более метров, поэтому при выборе нужно руководствоваться габаритными размерами металлопроката, с которым предполагается работать.

Видео о том, как выбрать плазморез

Лучшие плазморезы

Группа компаний ПУРМ производит надежные устройства разного назначения, рассчитанные на интенсивную эксплуатацию даже в суровых климатических и производственных условиях:

  • Ручные полупрофессиональные инверторные – КЕДР CUT 40 и CUT 40В

Фото 13. Инверторный плазморез типа КЕДР

  • Ручные профессиональные инверторные – ПУРМ-70А и ПУРМ-120А.

Фото 14. Инверторное устройство ПУРМ-70А

  • Ручные профессиональные трансформаторные – от ПУРМ-140 до ПУРМ-400.
  • Автоматические машины с ЧПУ – «OPTITOME 15», Диагональ, Вертикаль, Нормаль, Параллель и др.

Фото 15. Машина для плазменной резки OPTITOME 15 с ЧПУ

Каждый из плазморезов имеет свои преимущества и предназначен для плазменной резки металла с разной толщиной и характеристиками.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: